Parallel Packaging of Micro Electro Mechanical Systems (MEMS) Using Self-alignment
نویسندگان
چکیده
Packaging is one of the major cost drivers for MEMS devices. Currently wire bonding is the dominant method for electrically connecting MEMS chips to substrate. Using self-alignment a method for packaging multiple MEMS at the same time has been developed. The presented process achieves high throughput and precise alignment at low cost. The Controlled Collapse Reflow Chip Joining (C-4) process has been adapted to the specific requirements of MEMS. The combination of coarse robotics and liquid solder self-alignment guarantees precise positioning and alignment of the individual MEMS chips to the respective substrates. The new method has been implemented in a case study. In the study force sensors have been packaged. Precise angular alignment of the sensors is critical for receiving accurate measurements. Results of the case study are presented.
منابع مشابه
Novel Bonding technologies for wafer-level transparent packaging of MOEMS
Packaging costs of Micro-Electro-Mechanical System (MEMS) are still contributing with >50% to the total costs of most devices. Aligned wafer bonding techniques for Wafer-level packaging (WLP) demonstrates a huge potential to reduce these costs due to a smaller size of the total package, improved performance and shorter time to market. A special group of MEMS devices, Micro-OptoElectro-Mechanica...
متن کاملSelf-Assembly Techniques for Massively Parallel Packaging of MEMS Devices
Self-Assembly Techniques for Massively Parallel Packaging of MEMS Devices Jiandong Fang Chair of Supervisory Committee: Professor Karl F. Böhringer Electrical Engineering This dissertation investigates applications of self-assembly for massively parallel packaging of flat micro-components, the most common appearance of microelectromechanical systems (MEMS) or CMOS chips. Self-assembly assembles...
متن کاملFractional Order Control of Micro Electro-Mechanical Systems
This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...
متن کاملDesign and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer
In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which ...
متن کاملFractional Order Control of Micro Electro-Mechanical Systems
This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...
متن کامل